Skip to main content

Library Item

Surface Plasmon-Enhanced Nanopillar Photodetectors


We demonstrate nanopillar- (NP) based plasmon-enhanced photodetectors (NP-PEPDs) operating in the near-infrared spectral regime. A novel fabrication technique produces subwavelength elongated nanoholes in a metal surface self-aligned to patterned NP arrays that acts as a 2D plasmonic crystal. Surface plasmon Polariton Bloch waves (SPP-BWs) are excited by the metal nanohole array resulting in electric field intensity “hot spots” in the NP. The NP periodicity determines the peak responsivity wavelength while the nanohole asymmetry produces polarization-dependent coupling of the SPP-BW modes. Resulting photodetectors have 0.28 A/W responsivity peaked at 1100 nm at a reverse bias of ?5 V. Designs for further increasing the optical coupling efficiency into the nanopillar are explored. This technology has potential applications for plasmonically enhanced focal plane arrays and plasmonic photovoltaics.