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Abstract: Controlled release delivery is available for many routes of administration and 

offers many advantages (as microparticles and nanoparticles) over immediate release 

delivery. These advantages include reduced dosing frequency, better therapeutic control, 

fewer side effects, and, consequently, these dosage forms are well accepted by patients. 

Advances in polymer material science, particle engineering design, manufacture, and 

nanotechnology have led the way to the introduction of several marketed controlled release 

products and several more are in pre-clinical and clinical development. 
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1. Introduction 

Biodegradable and biocompatible materials for pharmaceutical dosage forms have enabled the 

advancement of pharmaceuticals by providing better therapy and disease state management for patients 

through controlled release drug delivery, particularly as microparticles and nanoparticles. Controlled 

release delivery is available for many routes of administration and offers many advantages over 

immediate release delivery. This review describes controlled drug delivery, the types/classes of 

biocompatible and biodegradable pharmaceutical polymers, the types of drugs encapsulated in 

pharmaceutical polymers, microparticle/nanoparticle controlled drug delivery, the particle engineering 
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design technologies and manufacture of controlled release microparticles/nanoparticles, and currently 

approved controlled release drug products. 

2. Controlled Drug Release Technology of Drugs 

In order to achieve efficient disease management, the concentration of released drugs from 

polymeric matrices should be within the therapeutic window with minimal fluctuation in blood levels 

over prolonged periods of time at the intended site of action [1–3]. The release of drug can be 

controlled by diffusion, erosion, osmotic-mediated events or combinations of these mechanisms [4,5]. 

Typically, a triphasic release pattern is observed, consisting of an initial burst [4], primarily attributed 

to drug precipitates at the particle surface and surface pores in the polymer, and the osmotic forces in 

highly water-soluble peptide formulations [6], a lag period depending on the molecular weight and 

polymer end-capping [5] and finally erosion-accelerated release [6]. 

Considering release rate control as a key parameter, a decrease in particle size (i.e., an increase in 

the specific surface area) results in higher release [6]. Also, higher porosity of the particles inducing a 

larger inner surface can increase the influx of the release medium into the particles and, thereby, 

facilitate the drug diffusion rate [7]. In addition, the specific properties of the polymer matrix (e.g., the 

chain length, flexibility and swelling behavior, potential interactions between polymer and drug) will 

significantly influence the drug release rate [8,9]. Therefore, switching to a different molecular weight 

or an end group capped polymer, and the use of block copolymers will alter the diffusion and drug 

release rate [10,11]. 

To achieve zero-order release kinetics indicative of uniform release with respect to time, which is 

desired for most applications, a combination of fast- and slow-releasing particles or the use of 

copolymers are possible alternative advanced methods [12,13]. A one-time only dose can be achieved 

by co-injection of a bolus of soluble drug as a loading dose and zero-order releasing microspheres as a 

maintenance dose. 

3. Types and Classes of Biodegradable and Biocompatible Pharmaceutical Polymers 

Biodegradability and biocompatibility of a polymer are among the most important properties for 

pharmaceutical applications. Biodegradation is generally described by two steps, namely: (1). water 

penetrates polymeric matrix, attacking the chemical bonds by hydrolysis and thereby shortening the 

polymer chain length resulting in a reduction in molecular weight and metabolism of the fragments and 

bulk erosion; and (2). surface erosion of the polymer occurs when the rate at which the water 

molecules penetrating the matrix is slower than the rate of conversion of the polymer into water-

soluble materials. Biocompatibility refers to specific properties of a material not having toxic or 

injurious effects on biological systems. Non-biocompatible materials can cause irreversible tissue 

damage, such as permanent tissue destruction, necrosis, significant fibrosis, and dystrophic 

calcification.  

However, it should be noted that good biocompatibility does not insure good biodegradability. 

Poly(N-isopropyl acrylamide) (NIPAAM), used to formulate thermo-responsive hydrogels [14], is 

non-toxic and biocompatible but not biodegradable by hydrolysis. It is of critical importance to 

investigate both biodegradability and biocompatibility of synthesized copolymers [15,16]. 
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3.1. Polyester-Based Synthetic Polymers 

Drug delivery systems based on biodegradable aliphatic polyesters have advanced remarkably over 

the past few decades. Commonly used polymers (Figure 1 and Table 1) such as poly 

(ε-caprolactone) (PCL), poly (lactide acid) (PLA), and poly (lactic-co-glycolic acid) (PLGA) are 

FDA-approved and well known for their biodegradability, biocompatibility and non-toxic properties 

which makes them suitable as matrices for controlled release drug delivery systems. Poly 

(lactic-co-glycolic acid) (PLGA) has become one of the most studied diblock copolymer biomaterials 

for drug encapsulation and is present in several commercially available pharmaceutical products. Due 

to the slow degradation and drug release rates, poly (lactide acid) (PLA) homopolymer has no longer 

been broadly used for the past two decades. PLGA heteropolymer degrades relatively faster than PLA 

and can achieve 2–6 weeks release criteria, while PLA delivers drugs over months [7]. 

Degradation rate of PLGA is attributed to its molecular weight, its distribution, the lactide/glycolide 

ratio, the polymer end-group, micro/nano particle size, pH, and the temperature of the release medium. 

Generally, low molecular weight of PLGA degrades faster and as a result it causes more rapid drug 

release and higher initial burst [17]. The hydrophilicity of PLGA is defined by the lactide:glycolide 

ratio and affects the release rate in a micro/nano particulate formulation. When the lactide/glycolide 

ratio increases, the drug release rate decreases [18]. The carboxyl end groups of PLGA are mainly 

involved in interactions with drug. The initial adsorption of a peptide to hydrophilic PLGA is due to an 

ionic interaction between the amino group of the peptide and the terminal carboxyl group of PLGA, 

resulting in initial burst release [10,11]. Also, hydrophilic and acidic properties of free carboxyl groups 

induce faster water uptake and hydrolysis of ester bonds making more acidic groups by autocatalytic 

cycle [19]. For particulate drug delivery systems, particle preparation procedure and interactions of 

polymer with drug, both play important roles in polymer degradation. Higher stirring rate [20] and 

ultrasound treatment [6] for emulsification can reduce particle size (thereby increasing the surface area 

per unit volume) of particles resulting in faster degradation upon exposure to the release medium. 

In comparison to PLGA, Poly (ε-caprolactone) (PCL) has high permeability to small drug 

molecules and a slow degradation rate which make it suitable for extended long-term delivery over a 

period of more than a year. While PLGA generates an acidic environment during degradation, which 

can lead to peptide/protein instability, the ability to avoid acidic conditions has become one of major 

advantages for selecting PCL as a drug carrier [21]. 

Poly(ethylene glycol) (PEG), also known as polyethylene oxide (PEO), is a largely exploited 

polymer for advanced physical and chemical stability of drugs and its “stealth” properties. 

Abuchowski, Davis and co-workers first described a method for the covalent attachment of mPEG to 

proteins in 1977 [22], which has since been termed PEGylation. PEG is an amphiphilic polymer 

composed of repeating ethylene oxide subunits and can dissolve in organic solvents as well as in water. 

Ordinarily, the properties of PEG that are of particular relevance in pharmaceutical applications are: 

(1). improved circulation time due to evasion for renal or cellular clearance mechanisms; (2). reduced 

antigenicity and escape from phagocytosis and proteolysis; (3). improved solubility and stability; and 

(4). reduced dosage frequency, with reduced toxicity [10,23,24]. Degradation rate of PEG depends 

both on the molecular weight and on the concentration of PEG. The degradation mechanism is 
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explained by the strong hydrophilicity of PEG, the hydrogen-bonding interaction between PEG and 

water [23]. 

Polyvinyl alcohol (PVA), a homopolymer with measurable surface activity, has some similarities 

with PEG in that it is comprised of a repeating monomer unit that is hydrophilic, as shown in Figure 1. 

PVA plays a variety of functions in controlled release delivery systems including the following; as a 

matrix of particle [25], hydrogel [26], and as a surfactant in emulsion systems during formulation 

processes for micro/nano particles [27–29]. PVA can be grafted with a chain of polymeric  

substrate [30,31]. For example, in PVA-grafted PLGA polymer, the PVA backbone can be modified to 

create negatively or positively charged properties using sulfobutyl or amine moieties and the resulting 

increase in the hydrophilicity of this polymer provides advantages when carrying sensitive 

biomolecules, such as proteins, peptides and DNA [30].  

As shown in Figure 1 and Table 1, poly(N-vinylpyrrolidone) (PVP) has been extensively used in 

controlled release drug delivery due to its biocompatibility, chemical stability, and excellent aqueous 

solubility [24,32]. Moreover, a polymer matrix combined with PVP has been known to reduce 

nonspecific protein adsorption [33]. Kollidon
®

SR is a compressible polymeric blend composed of 

polyvinyl acetate (PVAc) and povidone (PVP) commercially available and used often in 

pharmaceutical dosage forms [34]. The amorphous nature of PVAc and its low glass temperature (Tg) 

of 28–31 °C impart unique characteristics to Kollidon
®

SR. By the gradual leaching of water-soluble 

PVP, the matrix creates channels for releasing drugs [35]. Due to excellent solubility, the soluble 

grades of Kollidon
®

 usually have no delaying effects on the dissolution of drugs and can be used as a 

hydrophilic component in dosage forms that contain controlled-release excipients, such as 

cetylalcohol, alginate, cellulose derivatives, polyactic acid, polyvinyl alcohol, ceresine wax, stearic 

acid or methacylate copolymers to control the release of drugs, as binders or sometimes as 

plasticizers [34]. 

3.2. Natural Origin Polymers Used as Pharmaceutical Excipients 

Naturally derived polymers with special focus on polysaccharides and proteins have become 

attractive in the biological applications of controlled release systems due to their similarities with the 

extracellular matrix in the human body and favorable specific properties that can be exploited for 

“smart” systems, for example, stimuli-responsiveness. Polysaccharides are a class of biopolymers 

constituted by either of one or two alternating monosaccharides, which differ in their monosaccharide 

units in the length of a chain, in the types of the linking units and in the degree of branching [36]. 

Table 1 lists FDA-approved natural origin polymers and their routes of administration. 

Starch, composed of amylose and amylopectin, is generally modified to change its physical 

properties by adding plasticizers, such as water and glycerol, improving the flexibility of starch which 

is favorable in pharmaceutical applications [37,38]. In addition, cross-linking techniques can lead to 

advanced drug delivery systems by compensating for weak points of plasticized starch which is 

sensitive to moisture, shows low tensile strength and Young’s modulus [39]. Due to its high 

hydrophilicity, starch has bioadhesive properties [8] that are favorable for ophthalmologic drug 

delivery (i.e., timolol, flurbiprofen) [40]. 
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Chitosan is a polyaminosaccharide, prepared by the N-deacetylation of chitin. Chitosan is  

thermo-stable due to its strong intramolecular hydrogen bonding between hydroxyl and amino groups. 

As a weak poly-base, reversible pH-sensitive behavior, due to its large quantities of amino groups on 

its chain, makes chitosan applicable in hydrogel smart delivery systems. Chitosan is soluble in water 

and in organic acids such as formic, tartaric, acetic, and citric at low pH (<pH 6.5) due to protonation 

of the amino groups [41]. For particulate drug delivery, a cross-linking technique by glutaraldehyde is 

generally used [42]. 

Alginate, a marine-derived polysaccharide, is abundantly available in nature and is an attractive 

alternative for controlled release systems, as it is amenable to sterilization and storage [43]. Alginate is 

an anionic block copolymer consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G).  

Table 1. Polymeric inactive ingredients for FDA-approved drug products. 

  Polymeric inactive ingredients for FDA-approved drug products 

Polyester-based 

synthetic 

polymers 

 PLGA (for IM, SC uses)    

 Poloxamer (for oral, topical, IV opthalmic, SC uses)  

 Polyvinylpyrrolidone ethylcellulose (for oral use)  

 Sodium pyrrolidone carboxylate (for topical use)  

 Povidone (for oral, intra-articular, IM, Intrauterine, 

 topical, SC, respiratory, opthalmic uses)   

 PLA (for IM use)     

 PEG (for oral, respiratory, topical, IM, IV, opthalmic uses) 

 PVA (for auricular, IM, intraocular, topical uses)  

 KOLLIDON VA 64 (for oral use)    

Natural-origin 

polymers 

 Starch (for oral, IV, IM, topical)   

 Hyaluronate (for intra-articular, IM, intravitreal, topical uses), 

 Human albumin (for IV, SC, Oral uses)   

 Gelatin (for IM, SC, IV, oral topical uses)   

 Alginic acid (for opthalmic and oral uses)   

 Collagen (for topical use)    

Alginate forms a stimuli responsive hydrogel in two different ways. One is via hydrogen bonding at 

pH levels below 2, which is based on the pKa values for carboxyl acid groups in M (pKa 3.38) and 

G (pKa 3.65). The other way is via ionic interactions with divalent metal ions. Since, chelating agents 

such as EDTA or phosphate buffer can easily remove Ca
2+

 ions, Ca
2+

-responsive-hydrogel systems  

can be designed [44]. 

Hyaluronic acid is a major carbohydrate component of the extracellular matrix found in synovial 

fluids and on cartilage surfaces [45]. Hyaluronic acid, an excellent lubricator and shock absorber, 

inhibits chondrocytic chondrolysis, thereby improving the lubrication of surfaces and reducing joint 

pain in osteoarthritis [46]. Hyaluronic acid has been widely studied for drug delivery, especially for 

transplantation, injection and gene delivery particularly as it is non-immunological [45]. To avoid 

rapid degradation and clearance, when the hyaluronic acid is used as a carrier, its matrix is utilized 

with cross-linking using glurataldehyde [37], carbodiimide [37], or polyethyleneglycol diglycidylether 

(PEGDG) [46]. 
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Bovine Serum Albumin (BSA), a globular protein, is a naturally biodegradable, nontoxic and 

non-antigenic biopolymer making it suitable for controlled drug delivery. Typically BSA particles are 

prepared under mild conditions by coacervation or a desolvation process [47,48] and cross-linked by 

glutaraldehyde. However, polyethyleneimine (PEI) has been suggested to avoid potential toxicity of 

glutaraldehyde [49]. 

Collagen is the major protein component of the extracellular matrix. Twenty seven types of 

collagens have been identified to date, but collagen type I is the most investigated for pharmaceutical 

applications [37]. Several factors affect degradability of collagen, for example, structure contraction 

caused by cell penetration, collagenase, gelatinase and other non-specific proteinases can digest 

collagen [50]. The versatile properties of collagen (e.g., high mechanical strength, good 

biocompatibility, low antigenicity, and water uptake properties) have made it one of the most useful 

biomaterials for tissue engineering using a form of collagen sponge [51] or collagen gel [52]. 

Gelatin is a denatured protein obtained by acid and alkaline processing of collagen [37]. Gelatin, in 

a variety of isoelectric points, can be manufactured and basic gelatin with an isoelectic point of 9.0 and 

acidic gelatin with an isoelectric pont of 5.0 are mostly used. If the biomolecule to be released is 

acidic, basic gelatin with an isoelectric point of 9.0 is preferable as a matrix, and vice versa. Both 

gelatins are insoluble in water. To prepare a hydrogel through cross-liking, the gelatin hydrogels 

forming polyion complexes with proteins will facilitate the release of biologically active proteins [53]. 

3.3. Homo vs. Diblock Copolymer vs. Triblock Copolymers 

To enhance the desirable properties of polymer as a matrix for a controlled drug delivery system, 

efforts have been made to improve its hydrophilicity, biodegradation rate, and drug stability. The most 

commonly used hydrophilic block for polymeric drug delivery systems is poly (ethylene 

oxide)/poly(ethylene glycol), PEO/PEG. PEO is FDA-approved for parenteral administration, due to 

its low toxicity and biocompatibility [10]. One of the primary advantages of attachment of the PEO 

moiety is its effectiveness against protein adsorption to hydrophobic surfaces. For polymeric micelles, 

the length of the PEO blocks affects circulation time and uptake by phagocytes, with longer chains 

extending circulation time and reducing phagocytosis [54]. As a shell forming material for polymeric 

micelles, with PEO, PEG (Figure 1) imparts to the micelle with a “stealth character” in the blood 

compartment, achieving longer circulation [55]. PEG grafted to surfaces of nanospheres proved to 

reduce thrombogenicity and to increase their dispersion stability in aqueous medium, due to steric 

repulsion effects of tethered PEG strands [56]. PLGA-PEG-PLGA (ReGel) as controlled release 

formulations for two weeks delivery of glucagon-like peptide-1 (GLP-1) in type 2 diabetic rats [16]. 

PEG-PLGA-PEG triblock copolymers with TGF-β1 have been formulated to accelerate the diabetic 

wound healing [57]. PVA based branched graft polyester bearing PLGA block, which is first 

generation, designated as PVA-graft-PLGA, shows lower burst effects and controlled release profiles 

based on the structure and molecular weight of the copolymer [58]. In order to obtain negative charged 

polymer, as a second generation, branched poly[sulfobutyl-poly(vinyl alcohol)-g-(lactide-co-

glycolide)] (SB-PVA-g-PLGA) was reported in which the sulfobutyl groups are covalently conjugated 

to PVA backbone [59,60]. Third generation, amine-PVA-g-PLGA, was developed by attaching various 

amino groups to the PVA backbone, which is positively charged [61]. 
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Poloxamers, also known by the trade name Pluronics, are nonionic triblock copolymers composed 

of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO) blocks, 

designated as PEO-PPO-PEO [62]. Due to their amphiphilic characteristics poloxamer exhibits 

surfactant properties coupled with ability to self-assemble into micelles above critical micelle 

concentration (CMC) in aqueous solutions. Besides, these copolymers are shown to be potent 

biological response modifiers capable of overcoming drug resistance in cancer and enhancing drug 

transport across cellular barriers, such as brain endothelium [63,64]. 

Figure 1. Structures of biodegradable and biocompatible polymers. 

 

4. Therapeutic Agents Encapsulated in Polymeric Particles  

Administration of a variety of drugs from different therapeutic classes encapsulated in polymeric 

particles (Figure 2), particularly through parenteral route, has been extensively investigated to lead to 

complete absorption of drugs in the systemic circulation and control drug release over a predetermined 

time span ranging from days to weeks to months.  
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Figure 2. Various therapeutic agents from different therapeutic classes that have been 

encapsulated in polymeric particles. 

 

In chemotherapy, obtaining adequate drug levels at the tumor cell is the most primary issue because 

inadequate tumor cell drug-burden will lead to low cell apoptosis and to early development of drug 

resistance [65]. Chemotherapeutic agents (Figure 2) such as paclitaxel [66–68], docetaxel [69], 

vascular endothelial growth factor siRNA [70,71], 5-fluorourasil [72,73], doxorubicin [74,75], 

adriamycin [76], gancyclovir [77], celecoxib [78,79], bleomycin [80,81], and tamoxifen [29] have 

been successfully formulated in polymeric particulate delivery systems. 

 In pain control, opioids (Figure 2) are vital in the treatment of severe and chronic pain associated 

with cancer and certain chronic diseases. Morphine [82,83], nalbuphine [84], tramadol [85], 

buprenorphine [86,87], fentanyl [88,89], and hydromorphone [90] have been developed to accomplish 

prolonged drug release so that patients’ compliances, and by extension, qualify of life for patients 

suffering chronic pain can be improved. In addition, non-steroidal anti-inflammatory drugs (NSAIDs) 

such as flubiprofen [91], ibuprofen [92], celecoxib [93,94], diclofenac [95,96], and indomethacin 

[97,98], have been developed as encapsulated drug microspheres. Several local anesthetics also have 

been reported with opioids [90,99]. Lidocaine [100], tetracaine [101], bupivacaine [90], and 

ropivacaine [102] were studied for drug encapsulated polymeric particulate system. 

Antibiotic drug delivery will decrease the bacterial load at the infection site, minimizing renal, liver 

and systemic toxicities. Application of controlled drug release systems offers advantages in 

maintaining a highly site specific drug concentration for an extended period while reducing systemic 

toxicity and drug resistance. Antibiotics (Figure 2) incorporated in controlled release systems include 
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chlorhexidine [103], vancomycin [104], amphotericin B [105], gentamicin [106,107], and 

doxycycline [108–110]. 

Growth hormones and birth control hormones (Figure 2) have been mostly focused for sustained 

release formulation. Encapsulation of growth hormone in biodegradable PLGA microspheres has been 

a typical technique to prolong the effect of the drug. Human growth hormone, a somatotropic hormone 

to treat growth hormone deficiency (GHD), chronic renal insufficiency, Turner’ s syndrome, and 

cachexia secondary to AIDS, has been developed to reduce the need for frequent administrations by 

maintaining in vivo drug levels in the therapeutic range [28,111,112]. On the other hand, octreotide, a 

synthetic anti-somatotropic agent for the treatment of acromegaly and endocrine tumors, has been 

formulated in PLGA microspheres and commercialized as Sandostatin
®

 LAR
®

 depot (Novartis 

Pharma, Basel, Switzerland) on a monthly basis [113]. The use of polymers to deliver birth control 

hormones has evolved over the years. The first system, Norplant
®

, consisted of six levonorgestrel 

contraceptive implants for a five year duration of use. By replacing the initial model of silastic 

capsules containing steroid crystals with a solid mixture of the steroid and a polymer (rods) covered by 

a release-regulating silastic membrane, it was possible to release the same amount of contraceptive 

steroid delivered by six capsules through two rods, which is a second generation implant system, 

Jadelle
®

 [114]. However, these products are silicone based devices, which are non-biodegradable with 

considerable long-term toxicities. Consequently, the devices need to be removed after depletion of the 

drug. To overcome this problem, PLGA microspheres have been studied for implantation using 

levonorgestrel under the skin without special surgery [115–118]. 

Patient compliance rates are notoriously poor in antipsychotic medications due to the nature of the 

disease, troublesome side effects, and symptom recurrence. Undoubtedly, sustained and controlled 

release systems offer many advantages in the delivery of antipsychotics, reducing the frequency of 

dosing and enhancing drug bioavailability [119]. Haloperidol [120], risperidone [121,122], 

clozapine [123], and olanzapine [124] have been, and are being, studied for long acting  

particulate formulations.  

There are oral dosage formulations for which osmotic pumping is the major release mechanism. In 

this system, osmotic pressure is used as the driving force to induce drug release in a predictable and 

uniform manner. The osmotic pump consists of a solid core containing drug, alone or with an osmotic 

agent, surrounded by a semi-permeable membrane, which has a delivery pore. When this device is 

placed in water, the water is imbibed osmotically into the core, thereby pushing a volume of saturated 

drug solution through the delivery orifice in a programmed manner [125,126]. Propranolol [127], 

nifedipine [128], allopurinol [129], ferulate [130], diclofenac [131], and pseudoephedrine [132] have 

been formulated as osmotic pump controlled release formulations. 

5. Types of Polymeric Pharmaceutical/Drug Delivery Particles 

5.1. Microparticles for Controlled Release Delivery 

Due to the development of particulate drug delivery system, current formulations in the market for 

delivering proteins and peptides have reduced administration from once a month to every three 

months. Microparticles are particles between 0.1 and 100 µm in size. Kang and Singh studied the 
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effect of additives on the physicochemical characteristics and in vitro release of a model protein, 

bovine serum albumin (BSA) [133]. The addition of hydrophobic tricaprin additives with low 

molecular weight PEG-100, results in further release of BSA from PLGA microspheres. The difference 

in the release profiles between control and additive containing microspheres is closely related to their 

surface morphology.  

Blanco and Alonso compared the size effect of preparation method, w/o/w solvent extraction vs. o/o 

solvent evaporation, and encapsulation efficiency along with using stabilizer [134]. The size of 

microspheres prepared by two different methods depended on the intrinsic viscosity of the polymer 

solution. Microspheres using the w/o/w solvent extraction method showed a size increase, as intrinsic 

viscosity of the polymer solution increased, while the size of microsphere prepared by o/o solvent 

evaporation was increased with low viscosity polymer. Co-encapsulation of a stabilizer, poloxamer 

188 or 331, induced lower loading efficiency and slower release of BSA. Without stabilizer, protein 

release is mainly influenced by polymer erosion rate and forming water-filled channels.  

The effect of protein molecular weight (MW) on release kinetics from polymeric microspheres was 

studied using the phase inversion technique. The mechanism of release from microspheres appeared to 

be dependent on protein MW for microspheres with low loading (0.5–1.6%), whereas that is 

independent with high loadings (4.8–6.9%). At low loading, release of larger MW proteins was 

dependent on diffusion through pores for the duration of the study, while smaller MW proteins seemed 

to depend on diffusion through pores initially and on degradation at later times [135]. 

Tissue engineering in the context of controlled release drug delivery has been the subject of 

interesting recent research for drug delivery to bone tissue. Polymer microspheres as drug delivery 

carriers have been incorporated in 3D scaffolds for bone tissue controlled drug delivery [136–138]. 

Additionally, protein and small molecule therapeutics to promote bone growth have been incorporated 

in polymeric devices and in PLGA microspheres for controlled drug delivery to bone [139–143]. 

5.2. Nanoparticles for Controlled Release Delivery 

The area of nanoparticle drug delivery is gaining much attention in recent years for a variety of 

administration routes, including pulmonary nanomedicine delivery [144]. To improve the 

bioavailability of PLGA nanoparticles, Barichello et al. formulated surface bound peptides using 

nanoprecipitation solvent displacement method [145]. Insulin was preferentially surface bound on the 

PLGA nanoparticles and the amount of insulin encapsulated into nanoparticles was related to 

composition and pH of the buffer solution; the optimal pH was close to the isoelectric point of insulin. 

Insulin-loaded PLGA nanoparticles were prepared by w/o/w and s/o/w encapsulation methods with 

a stabilizer, Pluronic F68. Comparing the nanoparticles prepared by s/o/w method, the insulin release 

rate was higher for the batches prepared by w/o/w method containing stabilizers. Also the presence of 

stabilizers resulted in a sustained release of insulin, therefore a prolonged reduction of blood glucose 

level in diabetic rats [146]. 

Magnetically modulated nanoparticles are used for developing in vivo imaging and delivering drugs 

to targeted sites, such as tumors. Non-targeted applications of magnetic nanospheres include their use 

as contrast agents (MRI) and as drug carriers that can be activated by a magnet applied outside the 

body [147]. In another study, this magnetic force was used to improve the efficiency of orally 
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delivered protein therapeutics. When the external magnetic field was applied to the intestine, the transit 

time of magnetic particles slowed down; therefore, the residence time of the orally delivered particles 

in small intestine is extended and absorption of protein increases [148]. 

6. Manufacturing/Particle Engineering Design of Polymeric Microparticles and Nanoparticles 

6.1. Double-Emulsion Evaporation Methods 

As a considerable number of hydrophobic drugs are soluble in various water-immiscible organic 

solvent and are poorly soluble in water. By emulsion/solvent evaporation technique, both drug and 

biodegradable polymer are first dissolved in a solvent, mostly methylene chloride. The resulting 

organic oil phase is emulsified in an aqueous phase making o/w emulsion. Volatile solvents can be 

removed from this emulsion by evaporation [7]. However, for drugs that do not show a high solubility 

in methylene chloride, it can be replaced with butyl acetate, ethyl acetate, ethyl formate, or methylene 

ketone [7]. Alternatively, a cosolvent may be added to methylene chloride. For hydrophilic peptides or 

proteins, they are either dispersed in an organic solution of polymer or preferably processed in an 

aqueous solution of water-in-oil (w/o) emulsion resulting in a w/o or a w/o/w emulsion system [149]. 

However, o/w or w/o/w methods are predicted to result in low encapsulation efficiencies due to a flux 

of drugs from the dispersed phase to the larger volume of the continuous phase during manufacturing 

process [7]. In addition, proteins encapsulated by w/o or w/o/w techniques into particles are 

susceptible to denaturation resulting in a loss of biological activity, aggregation, oxidation and 

cleavage, especially at the aqueous phase-solvent interface [149]. In order to improve protein integrity, 

the use of stabilizers and surfactants are suggested during the primary emulsion phase.  

6.2. Supercritical Fluid (SCF) Technology 

Substances become supercritical fluids (SCF) when placed above their critical point, which exhibit 

the flow properties of a gas and the dissolving behavior of a liquid. Their solvent power is affected by 

density, temperature and pressure. Many excellent reviews exist on this cutting-edge particle 

engineering design technique that has found increasing utility in novel delivery systems for many 

routes of administration, particularly in non-invasive pulmonary delivery via pharmaceutical inhalation 

aerosols [150–153]. 

There are two possible processes for the drug and matrix polymer to be either dissolved or melted in 

the SCF and afterwards form particles following either the rapid expansion from supercritical solution 

(RESS) or from gas-saturated solution (PGSS) process. The RESS process, fine particles formed using 

the supercritical fluid as a good solvent, has two steps: (1) dissolving the solute into a supercritical 

fluid; and (2) formation of the solute as a microparticle due to rapid supersaturation [154]. CO2 is an 

attractive solvent for a variety of chemical and industrial processes, since it is abundant, inexpensive, 

non-toxic, and a relatively accessible critical point, i.e., Tc = 304.2 K and Pc = 7.37 MPa [154–156]. In 

the PGSS process, the supercritical fluid or dense gas is used as a solute. Polar or high molecular 

weight substances, such as proteins, are difficult to dissolve in CO2, which has no polarity. However, 

the ability of CO2 to diffuse into organic compounds enables the formation of composite particles in 

the PGSS process. The organic compounds will mainly constitute polymers and CO2 lowers the 
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melting point and decreases the viscosity of a compound with an increase in its concentration. As a 

result, the compounds are melted in a compressed gas and the concentration of a gas in a molten solute 

increases with pressure forming a saturated solution. When this solution is rapidly depressurized 

through a nozzle, composite microcapsules can be formed due to the release of gas from the  

condensed phase [154].  

6.3. Supercritical Antisolvent Method 

CO2 is the most common supercritical fluid used in pharmaceutical applications due to its relatively 

accessible critical point, abundance, and minimal toxicity [150,155]. In addition to RESS and PGSS, 

the antisolvent method utilizes CO2 as an antisolvent for particle fabrication. Antisolvent methods have 

the advantage of utilizing the high miscibility of supercritical fluids with organic solvents which have 

high dissolving power for the compound [155]. The techniques include the supercritical antisolvent 

(GAS/SAS), the precipitation with compressed supercritical fluid (PCA), aerosol solvent extraction 

system (ASES) and the solution-enhanced dispersion by supercritical fluids (SEDS) processes. The 

principle of the supercritical antisolvent method (GAS/SAS) is based on a rapid decrease in the 

solubilization power of a solvent by addition of a second fluid as antisolvent. Adding the antisolvent 

expands the organic solution thereby dissolving the solute inducing supersaturation of the solution. 

The precipitated particles are washed with the antisolvent to remove remaining solvent [154]. Particle 

size can be regulated by several factors, such as temperature, pressure and composition [154]. In 

contrast to the one-way mass transfer of the CO2 into the organic phase in the GAS process, in the 

PCA process a two-way mass transfer occurs. The organic solvent diffuses into the CO2, and the CO2 

diffuses into the organic phase. In the ASES process, the drug and polymer are dissolved or dispersed 

in an organic solvent, i.e., generally soluble in the supercritical CO2, that is sprayed into a supercritical 

CO2, then extracted, resulting in the formation of solid microparticles [157,158]. In the SEDS process, 

the particle formation is attributed to the mass transfer of the supercritical fluid into the sprayed droplet 

and to the rate of solvent transfer into the supercritical phase. Notably, a high mass transfer leads to a 

smaller particle size distribution with less agglomeration [159]. 

6.4. Spray Drying Particle Engineering Design 

Spray drying has been widely used in the efficient design and production of food and 

pharmaceutical particles, especially particles designed for use in pharmaceutical inhalation aerosols 

[151,160]. Spray drying [151] comprises of four steps: (1) atomization of the feed solution into fine 

droplets in a spray; (2) spray-air contact involving intimate flow and mixing; (3) drying of sprayed 

droplets at elevated temperatures; and (4) separation of dried particles from the air [160]. In order to 

control the various particle characteristics, the operating parameters of the spray drying process such as 

atomization pressure, feed rate, airflow, inlet temperature, outlet temperature, and the size of nozzle 

orifice all must be controlled [161]. Generally, a smaller nozzle orifice, faster atomization airflow, and 

a low feed concentration generate a larger particle size [162,163]. To modify the particle morphology, 

the feed solvent type [164] or optimizing the outlet drying temperature can be done [165]. By adding 

Tween 20 and lactose to the feed solution, the particles with rougher surfaces can be obtained [165].  
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Spray-freeze drying is based on the atomization of an aqueous drug solution via a two-fluid or an 

ultrasonic nozzle into a spray chamber which is filled with a cryogenic liquid, i.e., liquid nitrogen, or 

halocarbon refrigerant, e.g., chlorofluorocarbon, hydrofluorocarbon [166]. Once the liquid droplets 

contact the cryogenic medium, it solidifies quickly due to the high heat-transfer rate. After the spraying 

process is completed, the collected contents are lyophilized and frozen solvent is removed by vacuum 

or atmospheric freeze-drying [167]. To obtain a smaller particle size, the mass flow ratio of atomized 

nitrogen to liquid feed, which has the most significant influence to particle size, should be increased [168]. 

Spray freeze-drying can be exploited to create small microparticles and nanoparticles [169,170]. 

7. Marketed Controlled Release Polymeric Pharmaceutical Products and Clinical Trials 

Administration of a variety of drugs encapsulated in polymeric particles has been extensively 

investigated leading to complete absorption of drugs in systemic circulation and control drug release 

over a predetermined time span in days to weeks to months, resulting in increased patient compliance 

and maximal therapeutic effects. Lupron
® 

Depot is a microsphere formulation of leuprolide with 

duration of one, three or four months using PLA or PLGA in the treatment of prostate cancer and 

endometriosis. Nutropin
®

, a commercial PLGA microsphere formulation product of human growth 

hormone, is used for two weeks or one month duration. As a synthetic anti-somatotropic agent for the 

treatment of acromegaly and endocrine tumors, Octreotide encapsulated in PLGA microspheres, 

commercialized as Sandostatin
®

 LAR
®

 is taken on a monthly basis. In addition, Trelstar
®

 Depot for 

triptorelin, Suprecur MP
®

 for buserelin, Somatuline LA
®

 for lanreotide, Arestin
®

 for minocycline, 

Risperdal Consta
®

 for risperidone have been commercialized as a parenteral microsphere formulation 

products for extended duration [171–176]. Micellar nanoparticles incorporating paclitaxel or cisplatin 

are in their clinical trials [177]. There are also oral dosage formulation commercial products for which 

osmotic pressure is the major driving force in release mechanism, including Procardia XL
®

 for 

nifedipine (Figure 2) and Glucotrl XL
®

 for glipizide [47,48,178]. 

8. Conclusions 

Biodegradable and biocompatible materials for pharmaceutical dosage forms have enabled the 

advancement of pharmaceuticals by providing better therapy and disease state management for patients 

through controlled release. Controlled release delivery is available for many routes of administration 

and offers many advantages over immediate release delivery. These advantages include reduced dosing 

frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are 

well accepted by patients. Advancements in polymer material science, particle engineering design, 

manufacture, and nanotechnology have led the way to the introduction of several marketed controlled 

release products containing polypeptide drugs and protein drugs that retain their therapeutic activity 

over pharmaceutical timescales following encapsulation in biodegradable materials.  
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